A Decentralized Asymmetric Weighting Approach for Improved Convergence of Multi-Agent Systems with Directed Interaction
نویسندگان
چکیده
This work considers the convergence rate of multi-agent systems with discrete-time single-integrator dynamics and undirected interaction topologies. In recent work it has been proven that in case of lattice interaction topologies the convergence rate can be bounded away from zero, independent of the network size, using asymmetric weightings that give the interaction graph a preferred communication direction. Approximation methods for more general graphs, based on relative angles between agents, are presented, which suggest that the convergence rate is bounded away from zero as well. This work proposes alternative approximation methods, that improve the convergence rate compared to previous approximation methods. Furthermore it is shown that the improvement of the approximation methods degrade in comparison to other weighting approaches, the more the considered topology differs from a lattice graph. Therefore an iterative algorithm is proposed, that extends the idea of a preferred communication direction to general graphs, which are not similar to lattices or where the relative angles are not known.
منابع مشابه
A New Class of Decentralized Interaction Estimators for Load Frequency Control in Multi-Area Power Systems
Load Frequency Control (LFC) has received considerable attention during last decades. This paper proposes a new method for designing decentralized interaction estimators for interconnected large-scale systems and utilizes it to multi-area power systems. For each local area, a local estimator is designed to estimate the interactions of this area using only the local output measurements. In fact,...
متن کاملAdaptive Distributed Consensus Control for a Class of Heterogeneous and Uncertain Nonlinear Multi-Agent Systems
This paper has been devoted to the design of a distributed consensus control for a class of uncertain nonlinear multi-agent systems in the strict-feedback form. The communication between the agents has been described by a directed graph. Radial-basis function neural networks have been used for the approximation of the uncertain and heterogeneous dynamics of the followers as well as the effect o...
متن کاملDistributed Fuzzy Adaptive Sliding Mode Formation for Nonlinear Multi-quadrotor Systems
This paper suggests a decentralized adaptive sliding mode formation procedure for affine nonlinear multi-quadrotor under a fixed directed topology wherever the followers are conquered by dynamical uncertainties. Compared with the previous studies which primarily concentrated on linear single-input single-output (SISO) agents or nonlinear agents with constant control gain, the proposed method is...
متن کاملFault Detection and Isolation of Multi-Agent Systems via Complex Laplacian
This paper studies the problem of fault detection and isolation (FDI) for multi-agent systems (MAS) via complex Laplacian subject to actuator faults. A planar formation of point agents in the plane using simple and linear interaction rules related to complex Laplacian is achieved. The communication network is a directed, and yet connected graph with a fixed topology. The loss of symmetry in the...
متن کاملA class of multi-agent discrete hybrid non linearizable systems: Optimal controller design based on quasi-Newton algorithm for a class of sign-undefinite hessian cost functions
In the present paper, a class of hybrid, nonlinear and non linearizable dynamic systems is considered. The noted dynamic system is generalized to a multi-agent configuration. The interaction of agents is presented based on graph theory and finally, an interaction tensor defines the multi-agent system in leader-follower consensus in order to design a desirable controller for the noted system. A...
متن کامل